یک تابِع در ریاضیات یک رابطه دوتایی روی دو مجموعه است که هر عنصر در مجموعه اول را دقیقاً به یک عنصر در مجموعه دوم مرتبط میکند. مثالهای معمول در این زمینه، توابعی از اعداد صحیح به اعداد صحیح یا از اعداد حقیقی به اعداد حقیقی است.
- انواع تابع معروف
توابع چندجملهای : چندجملهای به تابعی گفته میشود که متشکل از ضرایب و متغیر (متغیرها) است و فقط عملگرهای ضرب و جمع روی آنهای اعمال شده باشد.
توابع مثلثاتی : توابع مثلثاتی، تابعهایی هستند که زاویه را به نسبت طول اضلاع آن زاویه در یک مثلث قائمالزاویه مرتبط میکنند. توابع سینوس و کسینوس از جملهٔ مهمترین این توابع بهشمار میروند. توابع مثلثاتی اهمیت بسیاری در ریاضیات کاربردی دارند و به خاطر ماهیت تناوبیشان، میتوانند بسیاری از پدیدههای تکرارشونده را توصیف کنند.
توابع متناوب : تابع ƒ: A → B متناوب یا پریودیک نامیده میشود، اگر عدد ثابتی مانند T موجود باشد که برای هر x داشته باشیم.
تابع همانی (y=x) : اگر دامنه و برد یک تابع برابر باشند و هر عضو، در دامنه دقیقاً به همان عضو در برد نظیر شود، آن تابع را تابع همانی مینامند.
تابع قدر مطلق : تابعی که هر مقدار در دامنه را به مقدار بدون علامت آن در برد نظیر کند، تابع قدر مطلق نامیده میشود. تابع قدر مطلق را با |f(x)=|x نمایش میدهند؛ که خواص مهمی دارد.
تابع ثابت (یعنی به ازای هر x ورودی y ثابت است) : تابع ثابت تابعی است که برد آن تنها شامل یک عضو است؛ و برای هر ورودی همیشه مقدار ثابتی را میدهد.
تابع جبری : تابع ƒ: A → B پوشا نامیده میشود اگر برای هر عضو y متعلق به B، حداقل یک عضو x از A موجود باشد که داشته باشیم.
مثلثات (به انگلیسی: Trigonometry) یکی از شاخههای ریاضیات است که روابط میان طول اضلاع و زاویههای مثلث را مطالعه میکند. نخستین کاربرد مثلثات در مطالعات اخترشناسی بودهاست. اکنون مثلثات کاربردهای زیادی در ریاضیات محض و کاربردی دارد.
بعضی از روشهای بنیادی تحلیل، مانند تبدیل فوریه و معادلات موج، از توابع مثلثاتی برای توصیف رفتار تناوبی موجود در بسیاری از فرایندهای فیزیکی استفاده میکنند. همچنین مثلثات پایه علم نقشهبرداری است.
سادهترین کاربرد مثلثات در مثلث قائمالزاویه است. هر شکل هندسی دیگری را نیز میتوان به مجموعهای از مثلثهای قائمالزاویه تبدیل کرد. شکل خاصی از مثلثات، مثلثات کروی است که برای مطالعه مثلثات روی سطوح کروی و منحنی به کار میرود.
دیدگاه خود را از طریق فرم زیر ارسال نمایید